Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification
نویسندگان
چکیده
The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities.
منابع مشابه
Cavity optomechanics mediated by a quantum two-level system
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum-mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the set...
متن کاملSelective Linear or Quadratic Optomechanical Coupling via Measurement
The ability to engineer both linear and nonlinear coupling with a mechanical resonator is an important goal for the preparation and investigation of macroscopic mechanical quantum behavior. In this work, a measurement based scheme is presented where linear or square mechanical-displacement coupling can be achieved using the optomechanical interaction that is linearly proportional to the mechani...
متن کاملNonlinear optomechanical measurement of mechanical motion.
Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interac...
متن کاملCavity Optomechanics at Millikelvin Temperatures
The field of cavity optomechanics, which concerns the coupling of a mechanical object’s motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical o...
متن کاملEnhanced quantum nonlinearities in a two-mode optomechanical system.
In cavity optomechanics, nanomechanical motion couples to a localized optical mode. The regime of single-photon strong coupling is reached when the optical shift induced by a single phonon becomes comparable to the cavity linewidth. We consider a setup in this regime comprising two optical modes and one mechanical mode. For mechanical frequencies nearly resonant to the optical level splitting, ...
متن کامل